Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Document Type
Year range
1.
International Journal of Applied Pharmaceutics ; 14(Special Issue 4):1-6, 2022.
Article in English | EMBASE | ID: covidwho-2262165

ABSTRACT

This study aimed to review zinc's effectiveness as an antivirus in treating herpes simplex virus infection. The authors use international journals published from 2000-2022, and use search engines such as Google Scholar, PubMed, and Science Direct with the keywords "zinc and herpes simplex virus". The herpes simplex virus that often causes symptoms in humans are HSV type 1 and type 2. The lesions appear as vesicles which then rupture into ulcers. Zinc is one of the most abundant nutrients or metals in the human body besides iron. Studies about the effects of zinc on HSV have shown that it has the function of inhibiting the viral life cycle. HSV attaches to the host cells to replicate and synthesize new viral proteins. Zinc can inhibit this process by depositing on the surface of the virion and inactivating the enzymatic function which is required for the attachment to the host cell, disrupting the surface glycoprotein of the viral membrane so it could not adhere and carry out the next life cycle, it can also inhibit the function of DNA polymerase that works for viral replication in the host cell. This article showed that zinc has effectiveness as an antivirus against the herpes simplex virus, therefore, patients infected with HSV can be treated with zinc as an alternative to an antivirus drug.Copyright © 2022 The Authors. Published by Innovare Academic Sciences Pvt Ltd.

2.
Antibiotiki i Khimioterapiya ; 67(5-6):39-60, 2022.
Article in Russian | EMBASE | ID: covidwho-2252015

ABSTRACT

Lectins are a group of highly specific carbohydrate-binding proteins with a wide spectrum of action, involved in the so-called <<first line>> of body defense. These unique biomolecules show high specificity for various mono- and oligosaccharides, primarily for viral and bacterial glycoconjugates. Cyanobacteria lectins are effective against enveloped viruses and are an appealing alternative to existing synthetic drugs. Virtually complete absence of resistance formation in viruses to these compounds is known. The purpose of this review is to analyze, summarize, and discuss the results of experimental studies in vivo and in vitro, illustrating the mechanisms of action and antiviral effects of lectins obtained from cyanobacteria in relation to the most dangerous and socially significant viruses: SARS-Cov-2, HIV, Ebola viruses, influenza, and hepatitis C. In addition, the article outlines some of the challenges that must be overcome in order to obtain effective antiviral drugs in the future.Copyright © Team of Authors, 2022.

3.
Biocontrol Sci ; 26(3): 177-180, 2021.
Article in English | MEDLINE | ID: covidwho-1438814

ABSTRACT

Ethanol is an effective disinfectant against the novel coronavirus SARS-CoV-2. However, its effective concentration has not been shown, and we therefore analyzed the effects of different concentrations of ethanol on SARS-CoV-2. When SARS-CoV-2 was treated with varying ethanol concentrations and examined for changes in infectivity, the ethanol concentration at which 99% of the infectious titers were reduced was 24.1% (w/w) [29.3% (v/v)]. For reference, ethanol susceptibility was also examined with other envelope viruses, including influenza virus, vesicular stomatitis virus in the family Rhabdoviridae, and Newcastle disease virus in the family Paramyxoviridae, and the 99% inhibitory concentrations were found to be 28.8%(w/w) [34.8% (v/v)], 24.0% (w/w) [29.2% (v/v)], and 13.3% (w/w) [16.4% (v/v)], respectively. Some differences from SARS-CoV-2 were observed, but the differences were not significant. It was concluded that ethanol at a concentration of 30%(w/w) [36.2% (v/v)] almost completely inactivates SARS-CoV-2.


Subject(s)
Disinfectants/pharmacology , Ethanol/pharmacology , SARS-CoV-2/drug effects , COVID-19/virology , Disinfectants/analysis , Ethanol/analysis , Humans , SARS-CoV-2/growth & development , SARS-CoV-2/physiology , Virus Inactivation/drug effects , Viruses/drug effects , Viruses/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL